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Recently, Borgs and Koteck~' developed a rigorous theory of finite-size effects 
near first-order phase transitions. Here we apply this theory to the 
ferromagnetic q-state Potts model, which (for q large and d~> 2) undergoes a 
first-order phase transition as the inverse temperature fl is varied. We prove a 
formula for the internal energy in a periodic cube of side length L which 
describes the rounding of the infinite-volume jump AE in terms of a hyperbolic 
tangent, and show that the position of the maximum of the specific heat is 
shifted by Afl , , (L)=(Inq/AE)L-a+O(L -2d) with respect to the infinite- 
volume transition point fit. We also propose an alternative definition of the 
finite-volume transition temperature fl,(L) which might be useful for numerical 
calculations because it differs only by exponentially small corrections from fl,. 

KEY WORDS: First-order phase transitions; finite-size scaling; Ports model; 
Fortuin-Kasteleyn representation. 

1. I N T R O D U C T I O N  

First-order phase transitions are characterized by discontinuities in the first 
derivative of the free energy, i.e., discontinuities of an order parameter like 
the internal energy or the magnetization. As a consequence, the specific 
heat and the susceptibility show 6-function singularities at the transition. In 
finite systems, however, these singularities do not occur. Instead, the jump 
in the order parameter is smoothed out and one observes finite peaks in the 
susceptibility and the specific heat. 

Recently the precise form of the order parameter in a finite volume has 
been studied by several authors (refs. 1-3; see ref. 12 for a recent review). 
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For cubic volumes, it has been predicted that it can be described by a 
universal function, and that the jump is smoothed out in a region of width 
L a in the driving field or temperature, where d is the dimension and L is 
the side length of the cube. 

In ref. 4, two of the present authors developed a rigorous theory of 
these finite-size effects that can be applied whenever it is possible to rewrite 
the partition function in terms of contour models with small activities that 
allow one to control the behavior around the transition point. Note that it 
is not important for the methods of ref. 4 whether the transition is "field 
driven" or "temperature driven," as long as it is first order. 5 

In this paper we will apply these methods to the q-state Potts models. 
For q large enough (and d>~ 2) this model undergoes a first-order phase 
transition as the inverse temperature 1~ = 1/kT is varied. At the transition 
point /3 ,  the number of stable phases goes from 1 below/~, to q above fl,. 
Actually, for /~=/~,, the q ordered low-temperature phases and the dis- 
ordered high-temperature phase coexist, and the inner energy E(fl)jumps 
from E a = E(/~, - O) to E,, = E([~, + 0). ~SJ 

Here we prove that the internal energy Eo~r([~, L) and the specific heat 
Cv~r([I, L) in a periodic box of side length L behave like 

and 

Ep~(~, L) Ea+ Eo~ ~Ea-E~ th {Ea~2 (fl-[1' La .+__~logq) (1) 

['Ed-Eo'~2 , -2 { ~  d logq C p o r ( B , L ) ~ L a k ~ Z ~ )  cn ( / ~ - / / , ) L  + - ~ }  (2) 

5 Actually, for an asymmetric, field-driven transition, the distinction between field-driven and 
temperature-driven transitions is somewhat artificial. 

with respect to the infinite-volume value fl,. We will also analyze the 
parameter Vz(fl) = 1 - I ( H 4 ) L  ( H 2 ) L  2 introduced in ref. 2, where ( . ) z  
denotes expectation values in L d with periodic boundary conditions a~d H 
is the Hamiltonian in L a. We find that the minimum of V L is located at a 
point fly(L) which is shifted by 

L -a ( q # ~  
A'B v(L) - E,, - E------a log \-~a / + O(L- 2a) (4) 

if L ~ ov and fl ~ fl, in such a way that ( f l -  fl,) L d is fixed. As a conse- 
quence, we locate the maximum of the specific heat at a point tim(L), which 
is shifted by 

log q -a -2d) 
dflm(L ) . . . . .  L + O(L ( 3 )  

Eo - Ea 
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with respect to fl,. Note that the coefficients of L -a in (3) and (4) differ 
from those derived in ref. 2 using a phenomenological thermodynamic fluc- 
tuation theory. It is interesting to compare (3) and (4), as well as the 
predictions of ref. 2, with the numerical data shown in Fig. 9 of ref. 2: both 
(3) and the corresponding prediction in ref. 2 are in good agreement with 
the numerical data, while the prediction of ref. 2 that ~flv(L)= Afl,,(L) in 
the leading order in L d is not consistent with them; on the other side, the 
above prediction (4) is again in excellent agreement with the numerical 
data presented in ref. 2 [see Section 4, Remark (i)]. 

We would like to stress that our results are derived directly from first 
principles, controlling all approximations made, provided q is large 
enough. Actually, our method allows one to calculate the higher-order 
corrections to the first-order approximations (1) and (2). For simplicity, 
however, we only calculate the second-order corrections (see Theorem 3, 
Section 3). 

In the course of proving (1) and (2), we also show that the number 
N(fl) of stable phases at temperature 1/kfl is given by 

N(fl)= lim Zper(fl' L) 
L ~ ~ e- t~r~t~)Ld (5) 

where Zr~ ~ is the partition function with periodic boundary conditions and 
J'(fl) the free energy; namely, 

f i  for f l<fl ,  N(fl) = + ! for /~ = fl, 

for f l>f l ,  

This extends the results of ref. 4, Section 5, to Potts models with large q. 
In view of (5), it is natural to take the location of the maximum of 

N(fl, L), the finite-volume approximation to (5), as an alternative defini- 
tion of the finite-size transition point p,(L). In fact, we prove in Section 4 
that this value differs from fl, only by an exponential error of the order 
q-bL, where b > 0 is a constant. We also propose an equivalent definition 
that might be more useful for numerical applications as the point where 
Epcr(fl, 2L) - Eper(fl, L) passes through zero. 

The paper is organized as follows. In Section 2 we use the Fortuin- 
Kasteleyn expansion along the lines of ref. 7 to rewrite the model in terms 
of contours; this allows us to use the methods of ref. 6 in the form of ref. 4 
to derive a formula for the finite-volume internal energy involving only 
exponential errors in L. In Section 3 we further expand these formulas in 
order to compare them to the formulas in the literature, namely those 
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proposed in ref. 2. Section 4 is devoted to the analysis of the finite-size shift 
of the transition temperature for the following three candidates of the 
finite-size transition point fl,(L): the location of the maximum of the 
specific heat, the minimum of VL, and the maximum of N(/~, L) mentioned 
above. 

We note that some of the results presented in this paper [in particular, 
the scaling form (2) for the specific heat and the corrected minimum value 
of the Binder parameter VL given in Section4] were independently 
obtained by Kosterlitz and Lee in their recent workJ ~t) We consider their 
results as complementary to ours, since they present several numerical 
calculations (we do not do any), while we are more concerned with the 
rigorous aspects of the theory in order to definitely settle some of the 
controversies in the literature. 

2. C O N T O U R  A N A L Y S I S  OF THE M O D E L  

In the Potts model, spin variables ai which take values in a discrete set 
{ I, 2 ..... q} are associated with each site i of a d-dimensional cubic Jattice 
Z a. Two nearest-neighbor spins o i and aj interact with interaction energy 
-Jf(a~, aj), where J >  0 for ferromagnetic systems and 6 is the Kronecker 
delta. 

We start by considering the finite system defined in a periodic cube T 
of side length L. If we use A to denote the set of all dL d nearest-neighbor 
bonds in T, the Hamiltonian of the system is 

H = - J  ~ 6(oi, aj) (6) 
( i , j ) ~ A  

According to the Fortuin-Kasteleyn representation of the Ports 
model, tS) the partition function Zper(fl, L) on the torus T can be written as 

Zper(fl, L ) =  ~ (e a -  1) Ixl qC.~tx) (7) 
X ~ A  

where the summation runs over all sets of bonds X c A and we use t)fl 
and CA(X) to denote the number of bonds and connected components 
(regarding each isolated site as a component), respectively, and fl = 1/k~ 
(without loss of generality we are choosing the coupling constant J = 1). 
The subsets of A could therefore be regarded as the configurations of the 
system. 

In ref. 7, Eq. (7) was used as the starting point for a contour analysis 
of large-q Potts models, which allowed a new and intuitive proof of the fact 
that the model undergoes a first-order phase transition at fl,. Here we 
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follow this strategy to rewrite Z~r(/~, L) in a form which makes it possible 
to apply the methods of refs. 4 and 6. As a consequence, we will be able 
to define smooth functions fo(~) and fa(~) such that fo(B) is identical 
with the free energy f(/~) for B>~,,fa(B)=f(~) for /~</~, , f( /~)= 
min{fo(/~), fa(//) }, and 

Z~r(~, L) = e -aL%~t~) + qe -pL,~fota) + O(q-bL) e -~t~f~p~ (8) 

for some constant b > 0 ,  provided q is large enough (and d~>2). Similar 
expressions will hold for the derivatives of Zr,~r(fl, L); see Theorem 1 below. 

In order to prove (8) by the methods of refs. 4 and 6, we first rewrite 
Zr~r(/3, L) in terms of contours starting from the expansion (7). For any set 
of bonds X c  A, we use C(X) to denote the number of connected subsets 
of X, S(X) to denote the set of sites which belong to some bond of X, and 
6X to denote the set of bonds which belong to A/X and are connected 
to X. We notice that 

6X=6)Xw62X 

where 

6k X= {b ~ A\X; IS(b) c7 S(X)[ = k }, 

and also that 

k = l , 2  

IS(X)l - (l/d) IXI = (1/2d)(161 X[ + 2 162XI) 

which follows from the fact that 2d bonds meet at every site of the lattice. 
Hereafter [EJ denotes the cardinality of the set E. Taking into account this 
formula and the fact that CA(X)= C(X)+ IS(A)\S(X)[, we get 

Zocr(//, L) = Z ( e / j -  1)lxl q~l/ajrA\Xiq ~l/za}ll~xll + c~x) (9) 
X=A 

where [16Xl[ : 161XI + 2  162XI. The formula (9) already expresses the fact 
that (for e P - l ~ q  TM) the partition function Zpor(~,L) describes the 
coexistence of an ordered phase (small empty islands in a sea of bonds X) 
and a disordered phase (small oases of X in an empty desert), with excita- 
tions suppressed as q-~/za, where I is the length of their boundary. 

Now, our aim is to express the partition function in terms of contours 
describing these excitations. To this end, we immerse the graph A inside the 
continuum torus 3 of linear size L [i.e., the real manifold (R/Ly)a]. Con- 
sidering the bonds, plaquettes ..... in A as subsets of T, we define P(X) as 
the union of all bonds in X and all plaquettes in A which contain 4 bonds 
of X if d =  2. For d =  3 the set P(X) contains in addition the cubes whose 
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all 12 bonds are in X, etc. We then consider the neighborhood of P(X) 
which contains all points of distance less than 1/3 from P(X). The 
boundary of this set (which is nonempty except for X =  A or X =  ~ )  splits 
into connected components (with respect to the usual topology of 1t-), say, 
71 ..... ?,,, which we call the contours corresponding to the configuration 
X c  A. Moreover, we define the length I1~'11 of a contour as the number of 
intersections of the contour ? with the bounds of A, and we observe that 

~', II~,kll--1t6xII 
k = l  

Notice that the contours Yl ..... ?, separate the ordered region X from the 
disordered region A\X.  Now, we divide the set of configurations X c  A into 
two classes: those configurations which contain at least one contour of 
diameter larger than L/3, and those where no such contour is present. 
The contribution of the former to the partition function (9) is denoted 
zbig(/~, L). The contributions of the latter can be uniquely decomposed into 
perturbations of X =  A or X =  ~ ,  and will be written as 

qZ,res(fl, L ) +  7resL[] L)  (lO) ~ d  ~1"~ 

with 

Z~,(//, L ) = ~ , - , ) ( e / ,  l)lXl q,'/,')IA',Xt [ I  P(~') (11) 
X "}, 

where the sum Z (") goes over the perturbations of A for m = o and of 
if m = d; the product runs over all contours corresponding to X, and p(y) 
is defined locally as 

P(?) = q  -~l/2a)ll~il (12) 

if ? describes the transition from an ordered exterior to a disordered 
interior, and as 

p(~, ) = q . q-,/2a)jl~ll (13) 

for a contour with ordered interior (see Appendix for the precise defini- 
tions). Note that C(X) is equal to the number of contours with ordered 
interior if X can be described as a perturbation of ~ ,  and equal to the 
number of contours with ordered interior plus 1 if X is a perturbation of 
A. This explains the factor q in (10). 

Given the representation (11) for Z~S(/~, L) and the fact that 

Z o e r ( f l ,  L) = Z TS(13, L) + qZ T~( ~, L) + Zb'g( fl, L) (14) 
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the bound (8) can now be easily proven using the methods of refs. 4 and 
6. We first note that the logarithm of Z~oes(fl, L) can be controlled by a con- 
vergent cluster expansion if fl ~> fit, while log Z~fS(fl, L) can be controlled if 
fl<~fl,. Comparing the corresponding expansions with that for flLdf(fl), 
one finds that 

I - l o g  Z~S(fl, L ) -  flLdftfl)l <~ O(q -bL ) (15) 

for some constant b > O, and hence 

IZ~S(fl, L ) - e aLqx;)[ <~ O(q-bL) e-~Lff(p) 

provided m = o  and fl>~fl, or m = d  and fl<~fl,. Note that there are no 
surface correstions to the leading behavior of log Z~ s because Z ~  s is 
defined on a torus. 

Even though the validity of the bound (15) for m = o  and m = d  
overlaps only at f l=fl , ,  it is possible to define smooth functions flo(fl) 
and .fa(fl) such that f , ,(fl)= f ( f l )  if fl>~fl,, fa ( f l )= f ( f l )  if fl <~fl,,.f(fl)= 
min{.[~,(fl),.Ja(fl) }, and 

IZ~'(~, L ) -  e eL~'m(a~l ~< O(q- hL) e aL~t(~) (16) 

becomes true for all fl; see Section 4 of ref. 4 (and the Appendix of this 
paper) for details. 

On the other hand, one may use the fact that all configurations X 
contributing to Z h~g contain at least one contour of size larger than L/3 to 
prove that 

]zbis(fl, L)I <~ O(q h~')e t,,'9(tn (17) 

(cf. ref. 6, Lemma5.5). Combining (14), (16), and (17), we get (8). 
Generalizing the bounds (16) and (17) to derivatives in the same way as 
in ref. 4 and using the notation 

Eper(fl, L ) =  - L  d d ~-~ log Zper(fl, L) 

we get the following theorem. 

T h e o r e m  1. There exist two six-times-differentiable functions fo(fl) 
and fd(fl) and constants b, b~ > 0  such that the following statements are 
true whenever q is large enough (and d>~ 2): 

�9 (f,,(fl) if fl>~fl, 
(i) 

�9 f(fll=l./;,(fl)" if fl<~fl, 
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(ii) f ( f l ) = m i n { f o ( f l ) , f a ( f l ) } ,  E d ( f l ) -  Eo(fl)>~b,~ 

t/ -B,I 
and Ifo(fl) -- fd(fl)l >>" b, 

B 
(iii) IZ~(fl, L) - [qe-PL%~I~+ e -Pcasd~m]l ~ e 'BLdr~a~O(q - bL) 

(iv) [Ep,~(fl, L) - (Pd(fl) Ed(fl) + eo(fl) Eo(fl))] <<. O(q -bL) 

where 0 ~< k ~< 5, 

po( fl ) = qe-PL%(~/[ qe - ~L%(~) + e-/~L'(t;~(t~)] 
and 

d 
E~(fl) = ~ (~/~(fl)), m = o, d 

Remarks.  (i) Notice that the relation (5) mentioned in the intro- 
duction follows immediately from (i)-(iii) above. 

(ii) Even though Theorem 1 is only proven if q is large, we expect 
that a similar statement stays true as long as q>q, .  ( q , = 4  in d = 2 )  and 
L is larger than (or at least of the same order as) the correlation length. To 
be more precise, we expect that it is still possible to decompose Zp~r into 
a term describing the fluctuations about the disordered phase, a term 
describing the fluctuations about the ordered phases, and a term describing 
the tunneling between ordered and disordered phases. Assuming a bound 
of the form (16) for the first two terms, with O(q -bL) replaced by 
O(Lae-t'/z~ where L0 is of the order of the infinite-volume correlation 
length, and neglecting the tunneling term, we conjecture that 

Zp~r(fl, L) = e -~L%(~) + qe -t~Lqo(t~) + O(Lde -L/~)  e-t~L~f(~) (8') 

if q > qc. For d = 2, the additional corrections due to tunneling effects are 
of the same order as those coming from the error term O(e -z /~)  and 
should be included in (8'). 

(iii) With the remark that it is "easy to state," but "not easy to sub- 
stantiate," a formula of the form (8) was already proposed by Privman/a2) 

3. FINITE-SIZE SCALING FOR THE MEAN ENERGY AND THE 
SPECIFIC HEAT 

In this section we derive the finite-size behavior of the mean energy 
Emr(fl, L) and the specific heat, 

d 
Cper(fl, L)  : --k fl 2 "~  Eper(fl, L) (l 8) 
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Letting 

d E d Cm(fl) = ~ m(fl) = - k f l  2 ~ Em(#) 

where E,. is defined in Theorem 1, m = o ,  d,  and observing that 

Pd(f)--Po(fl)=th{fl-fl-~-[fo(fl)--fd(fl)]--l-~ -} 

while Pa(f)+Po(fl)= l, we rewrite the statement (iv) of Theorem 1 
k = 0 ,  1) as 

(for 

E~r(fl, L)= Ea(#)+ E~ r Ea(fl)-E~ th Y+O(q -bL) (19a) 
2 2 

C~.r(fl, L )  = [Ea( f l )  - Eo( f l ) ]  2 kflZL a . Ca(E) + Co(fl) 
" -4 c-C"ff~ -~ 2 

+ Ca(#) - Co(#) th Y +  O(fl2q bL) (19b) 
2 

where we used the abbreviation 

_• In q 
Y= [fo(#) - f a ( f l ) ]  2 (19c) 

As a corollary, we immediately get the following result. 

C o r o l l a r y  2. For d~>2 and q large enough, the following 
statements hold: 

(i) The limit Epr ~ Ep,~(#, L) exists for all f l~R + and 

while 

(ii) 

f 
Eo(#) for 8 > 8 ,  

1 + q ~ E o ( # )  for fl=fl,  E~A#) = q - ~  e~(#) q + 1 

I, Ea(fl) for # < fl, 

For # ~ fl,, the limit Cp~r(fl) = limL_ 0o Cp=~(fl, L) exists, and 

.jfCo(#) for # > # t  
Cper(#) I.Cd(#) for fl < #, 

lira L-aC~(fl,, L)= kfl2 (Ed-Eo) z 
L-.~o q + 2 + q  -1 
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(i i i)  [Er, er( f ,  L ) -  Er~r(f3)[ <~ O(q bL) + O(e - h, lit t~,~c '~) 
(iv) iC~r(f3, L)-C~(f l)I  ~O(fl2q-bL)+O(fl2Lde b,t/~-lJ,IL~) 

provided f3 # f3,. Here Eo and Ea are defined as Eo(f3,)= Epic(f3 + 0) and 
Ea(f3,) = E~,r - 0), respectively. 

Note that the bounds (iii) and (iv) of Corollary 2, while valid for all 
f3-g:fl~, are only useful if If-f3,1 ~ L a. We now turn to the analysis of the 
region (f3 - f3,) ~< O(L u), which is the region where the finite-size rounding 
takes place. We introduce the constants Co= Co(f3,)= Cpe~(f3+0), and 
Ca= Ca(f3,)= Cv~r(fl-- 0), and expand fro(f3), Em(fl), and C,,(fl) around fl,. 
Using the fact that fo(flt)=fa(fl,) , one gets the following result. 

Theorem 3. For d>~2 and q large enough, 

(i) Eve'~(f3'L)=IEa+E" C a + C ~  2kf3~ (f3- f3')] 

+ 2 2kf3, 2 (f3-  f ' )  th Y2 

+O(q ~")+o((p-f , )  2) 

(ii) C~r(f, L)=Ca+C'------~' + 2 2 th Y2 

+kf32 2kf32(f3_f3,) Lach 2 Yz 

+ o(f32q -bL) + 0(f3'( f3  -- f3,)) + 0(/~2(f3 -- L )  2 Z, ~) 

where dE= Ea-Eo, AC= C a-  Co, and 

{ A_ff AC} inq Yz = -La (P-  ft) _ (f3_ f3t)2 ~ 2 

Proof. The proof is obvious, except for the error bounds 6 

Ith Y2 - -  th YI ~< O((f- f,)2) (20a) 

Jch-2 y _  ch-2 Y2I ~ O((fl- f3,)2) (20b) 

which are needed in the course of the proof. As an example, we prove the 
bound (20b) and leave the proof of (20a) to the reader. 

6 The bounds (20) are in fact not uniform in q, as may be seen from the proof below. A more 
precise statement would involve errors O((~-flt)21ogq) that explicitly expresses the 
dependence of the constants on q. 
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By the fundamental theorem of calculus 

ir 2th f _ 
1 

~<2 I Y -  Y21 sup 
,~ E0,~ ch [ t Y+  (1 - t) Y2-] 2 

2 IY-  ~'21 
~< sup 

,~to, l~ exp[2 ItY+ ( l - t )  Y21] 

2 [ Y -  Y2t 
~< sup 

,~o.~l 1 + 2  [ t Y + ( 1 - t )  Y21 

We now use Theorem l(ii) to bound 

inf 2 ItY+(1 - t )  Y2] >>-Ldb,(fl--fl,)--O((Ld(fl--fl,)2)--logq 
t~  [0 ,1]  

If the second term on the rhs dominates the first, Ifl-fl,I >~K for some 
constant K not depending on fl and L and the bound (20b) is a trivial 
statement. So we may assume without loss of generality that 

inf 2 I t Y + ( 1 - t )  Y21 ~ L a l f l - f l , l - l o g q  
t~(O, 1) 

which implies that 

2 I Y -  Y2] 2 I Y -  Y21 
sup max{l, (bi/2) t ~ I/~-/~,1-log q} ,~(o.j)l + 2  t t Y + ( l - t )  Y21 ~ < - -  

Inserting the bound [Y-Y2f<~const.Lal~-fl,I 3, the inequality (20) 
follows, il 

Remark. (i) If one expresses fl in terms of T= 1/kp, the bounds of 
Theorem 3 become ( ~ T =  T - T I )  

Eper(T, L ) =  Ea E,,q 2 AT + + A th Y2 

+ O(q-bL)+ O (-~T IATI2~ (21) 

8... 62 3-4-3 
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and 

with 

Cp~r(T,L)=Cd+Co A_A___~C (~_ AC \2 
2 + th Y2 + + kT 2 

--~ .4 T) Ld ch - 2 Y2 

[ 1 bL \ 

0 1 + (.(k~,)4IATI2L a) (22) 

dfdE~__ ---- - - A T  3C{AT'~2"~ lnq 
Y2=L t2kr r ,+ 4t, \ r , /  j 2 

(23) 

The formulas (7) and (9) of ref. 2 are exactly of the same form, with the 
only difference that they involve the argument 

~'= Y -  �88 In(Co/Ca) 

where we have the argument Y2- In order to discuss this discrepancy, we 
briefly describe the theory of ref. 2. It starts from the assumption that the 
probability distribution PL(E) of the energy in a finite volume L can be 
well approximated by the sum of two Gaussians centered at Em + Cm A T, 
m = o, d (in the notation of ref. 2, o is denoted - and d is denoted + ), with 
width (kT2C,,L-d)I/2. The normalization of these Gaussians is then chosen 
in such a way that PL(Eo)= qPL(Ed) for T =  T,. 

In fact, this normalization is incorrect because at T =  T:, all phases 
contribute to the periodic Gibbs state with the same weight. This has 
already been observed in ref. 6 and also follows from Corollary 2 above 
(recall that there are q ordered phases and one disordered phase at T =  T,). 
And the weight of a given phase includes the fluctuations around the corre- 
sponding maximum of PL. Therefore the correct normalization is obtained 
if one requires that the area under the peak at Ed is q times the area under 
the peak of Eo, which corresponds to PL(Eo)=q(Ca/Co) m PL(Ed) for 
T = T t. This explains the discrepancy between the formulas given in ref. 2 
and our formulas. 

(ii) It is obvious that one could calculate the higher-order correc- 
tions for Er~ r and Cp~r as well, starting from (19) again and expanding 
further in (/~-fl,).  

We close this section with the discussion of the quantity 

(E4)L  
VL(fl)= 1 3(EZ)2 (24) 
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introduced in ref. 2. [The expectation value ( E  k)L is defined as 

L -kd d k 
( - 1 )" L )  Zper(t, L) dt  k ZPer(t' 

k = 2 ,  4).-I Obviously, VL(fl)'-* Voo(fl)=2/3 as L ~  0o if we fix f l# t i , .  For 
a second-order transition it is expected that VL(t i )~  2/3 at fl =/3, as well, 
while Voo(fl,) is expected to be smaller than 2/3 for a first-order phase 
transition. Here 

VL(fl,) ~ 1 -- (qE4~ + E4a)(q + 1) 
3(qEZo + E2a) 2 

which is indeed strictly smaller than 2/3. Defining flv(L) as the point where 
the finite-volume quantity VL(fl) is minimal, one may now discuss the shift 
of fly(L) with respect to fl,. We defer this discussion to the next section. 

4. THE SHIFT OF THE TRANSITION POINT 

In this section we discuss the shift of the finite-volume transition point 
with respect to the infinite-volume value fl,. Defining VL(fl) as in the last 
section and the finite-volume approximation to the number N(ti) of stable 
phases at ti as 

VZper(h, L)2a]I/(2 a I) 
N(fl, L ) : =  LZp~r( h, 2L)_] (25) 

we consider the following three points: (1) the point tim(L) where the 
specific heat is maximal, (2) the point fly(L) where VL(ti) is minimal, and 
(3) the point tiN(L) where N(ti, L) is maximal. 

Theorem 4. For d>~ 2 and q large enough, the following statements 
are true provided L is large: (i) There is exactly one point tim(L) such that 
Cper(tm(L), L) > Cper(t, L) for all ti ~ tim(L). In addition, 

L-d 
tin(L) - t ,  = Eo _ Ea In q + O(L - 2a) (26) 

(ii) There is exactly one point tiv(L) such that Vt.( t iv(L))< VL(ti) 
for all t # f l v ( L ) .  In addition, 

t iv(L)- ti' = Eo-  e~ln \ Eg} + O(L (27) 
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(iii) There is exactly one point fiN(L) such that N(tiN(L), L ) >  
N(ti, L) for all t i#t iN(L).  In addition 

I t iu (L) -  ti,I = O(q -hL) (28) 

Bemarks. (i) For d =  2, the exact values of ti,, E,,, and Ea are 
known ~9"~~ [also see ref. 2, Eq. (32)]. For the q =  10 Potts model, 
t i t  ~ =0.701232, Ed=--0.9682, and Eo= -1.6643. Reexpressing (26) and 
(27) in terms of kT= fl-l, we get 

(kTt) 2 L-d 
kT,,,(L) = kTt + In q + O(L 2a) (26') 

E a -  Eo 

k T v ( L ) = k T t +  Ea-E,,  In +O(L za) (27') 
\ d ~  

In particular, for q = 10 and d =  2, we get 

kT,,(L)=O.7012+ I.63L 2 +O(L 4) 

kTv(L)=O.7012+2.39L 2+O(L 4) 

which is in very good agreement with the numerical data of Chaila et aL as 
shown in Fig. 9 of ref. 2. 

(ii) Inserting the value of tiv(L) into VL(ti), one finds that 

V~i, = min V t ( t i ) = ~ _ l  (E_~Ea-E2o) 2 -d) 
3 \ 2EaE o J + O(L (29) 

which, for d =  2 and q = 10, gives 

V~ ain = 0.559 + O(Z -2) 

which is in better agreement with the data of Challa et al. as shown in 
Fig. 8 of ref. 2 than their theoretical value 0.58. 

(iii) Theorem 4 shows that the point tiN(L) where N(ti, L) is maxi- 
mal is a much better approximation for tit than tim(L), which might seem 
the most natural definition of the finite-volume transition point at first 
sight. Remark that N(fl, L) may either be obtained directly using the 
available numerical methods to calculate partition functions, or indirectly 
using the observation that 

Eper(tiN(L ), L ) =  ep~r(tiN(L), 2L) (30) 

We therefore propose tiN(L) as a new way to determine ti, from the finite- 
size data. 
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(iv) Before actually proving Theorem 4, we indicate the heuristic 
ideas behind the proof. Starting with the shift of/7.,(L), we recall that 

A 2 . log q)  
Cper ( /7, Z ) "., Zdk fl2 ( - 2  E)  ch - 2 {-~- ( /7 - /Tt ) Ld -l.- T ; 

if L --> oo and/7 --+/Tt in such a way that (/7 -/Tt) La is fixed. This leads to 
the shift 

On the other hand, 

A/Tm(L ) log q L -  a 
AE 

Eper ( /T t ,  L) -- Eper(/Tt, 2L) = O(q-hC ) 

and 

d 1 
~-fi (Epe,(/1,, L) -  Eper(flt , 2L))= -~--~ (Cper(/T,, L)- Cper(/T,, 2L))= O(L d) 

by the bounds (19a) and (19b). Using the fact that [IN(L ) may be charac- 
terized by (30), one expects only an exponentially small shift 

A/TN(L) = O(q ~'-) 

In order to determine fly(L), we first note that it is the point where 

U(L,/7) = (E2>2c (31) 
<E4>L 

is minimal. By Theorem 1 

where 

and 

A,,,(fl) = L 2aeLal~J;"(tsJ d2 dB--- 7 e -tytsm(t~)= E2m(fl) + O(L-a)  

B,.(fl) = L -4aeraI!r~(n) d4 , . -  u~pi, .~tt j  = E4 (t~) + O ( L - a )  
d/7 4~ 

(32) 

(33a) 

(33b) 
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Neglecting the dependence of A,., B,. on fl and taking only the leading 
term in L - a  into account, we obtain 

Since Po(fl) + Pd(fl) = 1, this depends o n / / o n l y  through the variable 

x = Pd(~) -- P,(~) = th Y(/~) 

We rewrite the right-hand side of (34) as 

(E~Po+E~PJ , 2 ~ 2 _ [~(E,, + E~)+ ~x(E~- E~)] 2 
4 4 I 4 4 1 4 EoP o + EdP a ~(E. + E a) + -~x(E d - E 4) 

(F+ Gx) 2 

- F 2 + 2FGx + G ~ = g(x) 

(34) 

(35) 

corresponding to 

2 2 G E o - E  a 
x ~  F E2o+E~ 

Eo'-E  1 (Eo log Y(//) = arth --E-~ + E ~ -  \E2dJ 

Up to technical details, which we present below, this proves (27). 

:'root of Theorem 4. (i) Choose ~ =  ~(L) in such a way that 

~La(fo(~) --fd(fl)) = In q 

Then Y(j~)=0 and I Y(/~)I ~> �89 I/3-J~l L a, where bl is the constant from 
Theorem l(ii) [recall that Em(/~)= d(~fm(~))/dB]. As a consequence of this 
bound and the bound (19b), 

c~r(/~, L) < c.or(L L) 

for all )8 with I)6- j~[/> KL -a, provided K >  0 and L is chosen large enough 
(depending on K). It is therefore enough to analyze Cper( ", L) in an interval 
I=  [ ' f l - K L  -d, ~-FKL-d] .  Taking derivatives in (19b), which is justified 

where F= (E 2 + E2a)/2 and G = (E 2 -  E2o)/2. Calculating the derivative of 
g, one immediately finds the minimum of g at the location 

(36) 
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by Theorem l(iv), one easily shows that Cp~r(., L) has one and only one 
local maximum tim(L) i n / ,  that 

d2Cper(ti'L)>/kti2L3a(~-04 
ati 2 

and that 

for all /3 ~ I 

dCp~_~ti, L) ~ =~ <~ O(ti2Ld) 

provided K is chosen small enough. As a consequence of the last two 
bounds 

]tim(L) -/~1 ~< O(L -2a) 

which, together with the fact that 

~=t i t_L_  d lnq 
Ea- Eo 

+ O(L -2a) 

completes the proof of (i). 

(iii) The structure of the proof of (iii) is identical to that of (i), 
with the only difference that ti, takes the role of fl(L). The fact that 
Iti, - tiN(L)l ~< O(q hi.) follows from the bound 

~-~log N(ti, L) (2L)a , ~/j,= ~ '~-1  ]Epcr(fl,. 2L)-Epcr(ti,, L)] = LaO(q bt.) 

and the fact that 

d 2 (2L) a 
dtiZ log N(ti, L) - ( 2 a  1) kfl 2 [Cpe~(ti, 2L) - Cper ( f l ,  L ) ]  = O(L TM) 

provided ] t i - t i , I  <~KL -a. [We used the bound (19); and again K has to 
be chosen small enough.] 

(ii) Motivated by the heuristic analysis above, we define ~ as the 
value of ti for which 

2 2 2 2 th Y(~) = x,, = (E o - Ea)/(E o + Ea) 

Let g(x) be the function defined in (36). Then 

g'(Xo) = O, g"(xo) > 0 (37) 

g ' ( x ) < 0  for x ~ ( - 1 ,  xo), g ' ( x ) > 0  for x~(Xo, 1) (38) 
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Using (37)and the definition of x ( f ) = t h  Y(f)with Y given in (19c), one 
easily shows that 

d2g(x(f)) 1 dZg(x(f)) = g"(Xo) fEo(]J)-Ed(~) a\ 2 
tiff 2 ~ 2 d f  2 /1=}t 2 ~ ~-cch2-- ~ L ) = :  eL 2d (39) 

provided I f - ~ J  ~< eL d and e > 0 is chosen small enough. On the other 
hand, 

d2U(L' fl) d2g(x(fl) ) + O(L d) + O(L 2d If -flit[)= dZg(x(fl) ) ~2 a~2 a~2 + O(L a) 

in the interval I =  [ # -  eL -J, ]~+ eL --a] [recall that l]~- fl,[ = O(L u)]. 
We therefore conclude that 

d2 U( L, [I) >~ ,:L 2a 
df 2 ~" 2 for f e I 

provided L is chosen large enough. In a similar way one obtains 

dU(L,dfl fl) /~= ~<const(l + L d I ~ -  fl, l)~< O(1) 

We conclude that U(L, f)  has exactly one local minimum fv (L)  in L and 
that 

Since 

i f v(L)-~1 ~< O(L -~) 

[~ = fl, -(L-a/AE) log(qE~/E~) + O(L -2a) 

this proves the bound (27). 
We are left with the proof that 

U(L, fl) > U(L, fly(L)) 

Let xl. 2 = x(]J i eL-a). Then 

g(x) >. min{ g(x,), g(x2)} =: g(xo) + g 

by the bounds (38). 
conclude that 

provided If-]~l >~L -d 

for all x r (x,, xz) 

Since U(L, fl) - g(x(f)) = O(L-d) + O(f--  fl,) we 

U(L, f l)>U(L, ~) 
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provided I f l - f l d  ~< K, K >  0 is chosen small enough and L is large. But for 
Ifl - f l , I  ~> K either P+(fl) <~ O(e -b~La) or P_(fl) <~ O(e-b'~La), where bl is 
the constant from Theorem 1. Combined with the bounds (32) and (33), we 
obtain that 

U(L, fl)= 1 + O(L J) 

if I /~-fl ,  I >/K; this completes the proof because U(L, f ly(L))< 1. | 

A P P E N D I X .  T H E  D E F I N I T I O N  O F f m A N D Z ~  ~ 

We divide the set of contours into two classes: those of diameter less 
than L/3, to be called short in the sequel, and the remaining ones to be 
called long. It is a consequence of our definition of contours that the set 
-I]-\7 splits into two connected components for all short contours 7. We 
write Ext 7 for the larger one and Int ~, for the smaller one. Given a short 
contour ),, there is a unique configuration X(~) such that 7 is the only 
contour corresponding to X(y). If X(7) c Ext ~, 7 will be called an ordered 
contour; if X ( y ) c  Int ~, it is called disordered. 

A set 0 of contours is called admissible if there exists a configuration 
X such that 0 is the set of contours corresponding to X. If 0 is an 
admissible set of short contours, a contour y ~0  is called external if it 
touches the set N-~,~ Ext y. A set t3 of contours is called a set of mutually 
external contours if, for all ),, 7 ' e  0, dist(Int 7, Int y')>~ 1/3. 

The partition functions Z~( f l ,  L) introduced in (11) are defined by 
restricting the sum in (9) to the sum over all admissible sets of short 
contours with ordered external contours if m = o and disordered ones if 
m = d. The activity p(y) of a short contour y is defined by (10) if ~, is an 
ordered contour, and by (11) if 7 is a disordered contour; that is, 

P(7) = q- {[yll/2d 

if 7 is ordered and 

p(y) = q. q-rlrllna 

if 7 is disordered. Note that the minimal length of an ordered contour is 
HTll = 2, while the length of the smallest disordered contour is 4 d - 2 .  

Given a volume V c  R a such that V= Int 7o for some contour ~o, we 
introduce B(V) as the set of all bonds whose center lies in V and define 

Z,,,(V) = ~_, (e ~ - 1 )Is(z)~ x(a)l q(l/a)ls(v)\x(a)l 1-I p(7) 
d y e a  

(A.1) 
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where the sum goes over all admissible families 8 of contours such that the 
external contours in 0 are m contours with dist(y, V')>~ 1/3. We use X(0) 
to denotes the uniquely determined configuration X corresponding to 0. 
With this definition we may rewrite 

Z~o~s(fl, L)=~" (e t~- 1) In(Exto)l [I P(7)Zd(Int y) (A.2) 

and 

Z'a"~t(fl, L ) = ~  qlntE~te)~ H P(7) Zo(Int y) 
0 ~ O  

(A.3) 

where the summations are over sets of families ~3 of mutually external short 
m contours (m =o ,  d, resp.) and Ext 0 = (]r~,~ Ext y. 

Multiplying every term Za(lnt y) by l=Z,,(lntv)/Z,,(Intv), we may 
iterate (A.2) to get 

(o) 

Z,7~(fl, L) = ( e / ' -  I) aL~ ~ [ I  K(~) 
8 ?~8 

where the contour weight K(~) is defined by 

(A.4) 

Za(Int y) 
K ( y ) = p ( 7 ) - -  (A.5) 

Zo(Inty) 

and the sum goes over all collections 0 of short ordered contours such that 
dist(7, 7')/> 1/3 for all 7, 7' E O, 7 # 7'. Similarly, introducing for disordered 
contours 7 the weight 

Zo(Int y) 
K(y) = p(~) - -  (A.6) 

Zd(Int 7) 

we get 

(d) 

Z~(f l ,  L ) =  qL~ ~ 1-I K(7) (A.7) 
8 ~,eO 

where the sum goes over all collections O of short disordered contours such 
that dist(),, 7')>~ 1/3 for all ~,, y 'eO, 7r 

Using the methods of refs. 4 and 6, one now shows that there exist a 
constant b > 0 and a uniquely defined inverse temperature f ,  such that the 
following statements are true provided q is large enough: 

(i) IZm(V)[ ~ e  -#f(p)ls(v)l/d+O(13VI) for all inverse temperatures fl 
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(ii) IK(7)I ~<q-bll~ll 

(iii) Ig(~)l ~<q-bllvll 
Here 

if ~ is disordered and ([1-  [it) diam y -%< b log q 

if 7 is ordered and ([1, - fl) diam ~ ~< b log q 

fl = dlog(e a - 1) 

[1, = dlog(e ~ ' -  1) 
(A.8) 

Note that the bound (15) mentioned in Section 2 is an immediate conse- 
quence of (ii), (iii), (A.4), (A.7), and the standard techniques of Mayer 
expansions for dilute polymer systems. 

We now define the extensions fm(fl) of the free energy f(fl). We 
introduce 

K'(),) := K(7) x(b log q + ( f l -  fit) d iam?)  (A.9) 

if y is an ordered contour, and 

K'(~,) := K(y) x(b log q + ([1,-  fl) diam y) (A.lO) 

if ~ is a disordered contour. Here X is a smoothed version of the charac- 
teristic function IX e C6, 0 ~< X ~ l, X(x) = 0 if x ~< 0 and X(x) = 1 if x ~> 1 ]. 
Note that 

IK'(?)I ~< q-hltrfI (A.11) 

for all 7 and all fl~>0 by the definition of K' and the bounds (ii) and (iii) 
above. We conclude that the free energy f , ,(fl) corresponding to the parti- 
tion function 

(m) 

Z ' ( f ,  L) = e ,,,,c~ Z l-I K'(y) (A.12) 
O y e 0  

with 

eo= -d log(e /~-  1)= - f l  

ed = --log q 
(A.13) 

is well defined and may be analyzed by a convergent cluster expansion. 
Theorem 1 then follows using the methods of ref. 4, Section 4. Note that 
statement (i) of Theorem 1 is obvious at this point since K ' (7)=K(7)  
for all ordered contours if fl~> f t ,  while K ' (~)= K(~) for all disordered 
contours if fi ~< fl,. 
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Remark. 
of the form 

Borgs et  aL 

In order to apply the methods of ref. 4, one needs bounds 

for some constants Ck < ~ which do not depend on [L The bounds (A.14) 
are obviously fulfilled if we restrict/3 to, say, [ 1, ~).  On the other hand, 
Id%m/d(~)k[ ~< 1 for all/L As a consequence, 

[/~(fo(P)-f,,(/~))l >_-b, [/~- ~,l 

which, together with the fact that 

fl,=logq+O(q h) 

implies that 

IPo([~)l <~ q ~''(e/~- 1) "~ 

(similar bounds hold for the derivatives). We conclude that 

d~k [Eper(/~, L)-(Pa(~)Ea(fl)+ Po([~)Eo(fl))] [ 

<<. [Er,er(fl, L)-Ed(fl)] +O(q h,.) (A.!5) 

if fl~ 1. For fl ~< I, however, E~r(fl, L) may be analyzed by a standard 
high-temperature expansion, which immediately gives a bound of the form 
O(q -bL) for the right-hand side of (A.15). 

ACKNOWLEDG M ENTS 

We are grateful to Vladimir Privman and Allan Sokal for several 
discussions and suggestions. C.B. and R.K. would also like to thank 
S. Miracle-Sol6 and the Centre de Physique Th6orique for invitations to 
the CNRS in Marseille, where this work was started. The work of C.B. was 
partially supported by the A.P. Sloan Foundation and by the NSF under 
DMS 90-08827 and DMS 88-58073. 

REFERENCES 

l. K. Binder and D. P. Landau, Phys. Rev. B 30:1477 (1984). 
2. M. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B 34:1841 (1986). 



Finite-Size Scaling for Potts Models 551 

3. M. S. Challa, D. P. Landau, and K. Binder, Monte Carlo studies of finite-size effects at 
first-order transitions, Virginia Commonwealth University Preprint, Richmond, Virginia 
(1989). 

4. C. Borgs and R. Kotecky, J. Stat. Phys. 61:79 (1990). 
5. R. Kotecky and S. B. Shlosman, Commun. Math. Phys. 83:493 (1982). 
6. C. Borgs and J. Z. Imbrie, Commun. Math. Phys. 123:305 (1989). 
7. L. Laanait, A. Messager, S. Miracle-Sole, J. Ruiz, and S. Shlosman, Interfaces in the Potts 

model I: Pirogov-Sinai theory of the Fortuin-Kasteleyn representation, CPT Preprint, 
Marseille (1989). 

8. C. M. Fortuin and P. W. Kasteleyn, Physica 57:536 (1972). 
9. R. J. Baxter, J. Phys. C 6:L445 (1973). 

10. T. Kigara, Y. Midzuno, and T. Shizume, J. Phys. Soc. Jpn. 9:687 (1954). 
11. J. M. Kosterlitz and Jooyoung Lee, Finite-size scaling and Monte Carlo simulations at 

first order phase transitions, Preprint (June 1990). 
12. V. Privman, ed., Finite Size Scaling and Numer&al Simulations of Statistical Systems 

(World Scientific, Singapore, 1990). 


